
Object-Oriented
Programming

 5 - 1

OBJECT-
ORIENTED

PROGRAMMING
LANGUAGES

-- C++ --C++ Classes const Inheritance
Using C++ Automatic typedef inline Derived

Classes
Types Function Overload Reference types

Composition
Scope Resolution Type-safe link new, delete

Binding
Protection Constructors Containers Virtual Functions
friend Functions Destructors Header Files

Operator Overloading

Object-Oriented
Programming

 5 - 2

THE C++
LANGUAGE

3 Developed by Bjarne Stroustrup starting in the
early 1980's

3 Based on merging features of C and Simula-67
(developed in Scandinavia in 1967)

3 Originally called C with Classes since it
involved adding Simula-67's class concept to C

3 C with Classes was later expanded by simply
adding improvements to C (not to implement object
orientation necessarily), so the concept of the next
step after C, or C++ (the C increment operator is +
+), evolved

Object-Oriented
Programming

 5 - 3

OBJECT
ORIENTATION3 Simula-67 supports the creation of simulations, and

simulations of systems usually involve many discrete,
independently operating entities

3 The authors of Simula-67 called these entities
objects

3 Rather than perform actions on objects in a
simulation, Simula-67 evolved the concept of sending
messages to objects, and that's what object-oriented
programming (OOP) entails

3 OOP later proved to be an easy way to think about
many other types of problems, so a number of other object-
oriented programming languages (OOPLs) were developed,
most notably Smalltalk

3 These OOPLs provided many benefits, but the steep
learning curve and significant period of limited productivity
were drawbacks

Object-Oriented
Programming

 5 - 4

AN OBJECT-ORIENTED
C

C++3 Developed to take advantage of the ease of
programming provided by an OOPL

3 Developed to provide an easy learning path for C
programmers

3 Developed to fix defects in C which allow certain
kinds of bugs to slip through the compiler -- bugs which
may go unnoticed until runtime

C++ allows the programmer to
focus on concepts rather than
forcing him to concentrate on the
code which implements those
concepts

Object-Oriented
Programming

 5 - 5

THE ANSI C++
STANDARD

3 ANSI committee X3J16 was created to produce
an international standard for C++, which is still in
development

3 Most of today's C++ compilers deviate from the
standard in one way or another, so portability of code
between different C++ compilers on different platforms
tends to suffer today

3 GNU C++ is becoming a standard in its own
right due to the fact that it is free and it runs on many
platforms, including 386 PCs and workstations, but
GNU C++ does not conform to the C++ standard
exactly

Object-Oriented
Programming

 5 - 6

THREE WAYS OF USING
C++

3 Like C or C with extensions -- many C
programs may be compiled with a C++
compiler with little or no modifications (mainly
in the area of function prototypes)

3 Like C with enhanced data abstration
capabilities -- more sophisticated data
structures may be manipulated with greater
ease in C++

3 Like an OOPL -- all the benefits of
contemporary object-oriented programming
may be achieved through C++

Object-Oriented
Programming

 5 - 7

TYPES = STRUCTS +
FUNCTIONSA type is a C struct with

functions
struct complex { /* The C struct */
 float real_part;
 float imag_part;
};

struct complex { 9/29/22 The C++ struct
 float real_part;
 float imag_part;
 complex(); 9/29/22 a constructor (discussed

later)
 void add (complex, complex); 9/29/22 operates on

object
};

Object-Oriented
Programming

 5 - 8

typedef FOR C++
STRUCTS

IS AUTOMATIC
struct complex a, b; /* C form is supported

*/
complex x, y; 9/29/22 "struct" is not

required

x.real_part = 2.2;
x.imag_part = 3.3;
y.real_part = 4.2;
y.imag_part = 4.3;
y.add(x, y); 9/29/22 y = x + y

Object-Oriented
Programming

 5 - 9

SCOPE RESOLUTION
OPERATOR

07:21:41 PM3 Member functions associated with a struct are declared as
function prototypes in the struct

3 When member functions are defined, their associated
struct is specified using the scope resolution operator (
07:21:41 PM)

void struct_name07:21:41 PM
member_function_name() { /* body */ };

as in
void complex07:21:41 PMadd (complex left,

complex right)
{ /* body */ };

Object-Oriented
Programming

 5 - 10

SCOPE RESOLUTION
OPERATOR,
Continued3 The scope resolution operator may be used

whenever the compiler would not normally choose the
desired name

int x;
void main() {
 int x;
 x = 2; 9/29/22 local X is

assigned
 07:21:41 PMx = 4; 9/29/22 global

X is assigned
};

Object-Oriented
Programming

 5 - 11

MEMBER FUNCTION
SCOPE3 A member function may access any other member

in the same struct, including both data and other member
functions

void complex07:21:41 PMadd(complex left, complex
right) {

 real_part = left.real_part + right.real_part;
 9/29/22 note that the real_part left of the
 9/29/22 equal size refers to the real_part
 9/29/22 of the target object
 imag_part = left.imag_part + right.imag_part;
};

Object-Oriented
Programming

 5 - 12

DATA
PROTECTION

Access to data and functions within a struct is
controlled by the three access specifiers :

3 private -- prevents access except by other
members

3 protected -- like private, except inherited
classes also have access (inheritance is discussed
later)

3 public -- permits everyone, including end
users, to access the members

Access to private and protected members can be
granted to non-member functions by using the friend
keyword when declaring the non-member function inside
a struct

Object-Oriented
Programming

 5 - 13

public AND private WITH
friend#define SIZE 10

struct int_array {
 private:
 int a[SIZE];
 public:
 void init(); 9/29/22 a member function
 friend void print (int_array); 9/29/22 a friend

function
};
void print (int_array x) { 9/29/22 not a member

function
 for (int i=0; i<SIZE; i++) cout << x.a[i] << " ";
 cout << "\n";
}

Object-Oriented
Programming

 5 - 14

CLASSES
class

is the preferred keyword for defining new types in
C++

3 struct defaults to public for the access of its
members

3 class defaults to private for the access of its
members

class typename { struct typename {
 9/29/22 private members 9/29/22 public

members
public: private:
 9/29/22 public members 9/29/22 private

members
}; };

Object-Oriented
Programming

 5 - 15

AUTOMATIC typedef
DECLARATIONSThe tag names of these entities are designated as

reserved words within their scope automatically (similar
to doing a typedef in C), and the form of their
declarations and definitions are similar:

3 class
3 struct
3 union
3 enum

Object-Oriented
Programming

 5 - 16

FUNCTION
OVERLOADING3 Function Overloading allows more than one

function to be given the same name as long as all these
functions have distinct argument lists

3 Function Overloading prevents name clashes
when multiple libraries come into use

3 Function overloading works through name
mangling, where the compiler-generated name for the
function includes information on the types of its
arguments

3 Examples of overloaded functions:

void print(int);
void print(int, char);
void print(double);

Object-Oriented
Programming

 5 - 17

DEFAULT FUNCTION
ARGUMENTS

3 Default arguments are used in a function's
argument list when common values are to be automatically
generated by the compiler rather than always forcing the
programmer to specify them

3 Default arguments may be given only once, in the
function declaration

3 Only trailing arguments may be given default
values, and once default values are assigned, they must be
assigned to the rest of the remaining arguments as well

Object-Oriented
Programming

 5 - 18

TYPE-SAFE
LINKAGE

C++ was designed in part
to
eliminate problems found
in C 3 C++ requires full function prototyping -- C does not

3 C++ performs strong type checking (type-safe
linkage), so if the arguments to a function when it is called
are not the same types as when it was declared, the
compiler will flag this error at compile time -- C does not

3 C++ does not always hold you to type-safe linkage
because there are times when you may want to link in code
generated by a C compiler; C++ lets you do this through an
alternate linkage specification, which looks like this:

extern "C" {type
function_name(arg_types); }

Object-Oriented
Programming

 5 - 19

CONSTRUCTOR
S3 A constructor is used to initialize a variable

based on a class when the variable is created
3 A constructor is a member function of the class

that has the same name as the class
3 Constructor calls occur automatically at the

point the variable is created, and the programmer
cannot access the variable before the constructor is
called

3 Constructor functions may be overloaded like
other member functions so that various kinds of
initialization may be done

3 Default arguments may also be used with
constructor functions so long as ambiguities are not
created

3 Constructor functions are not required by C++,
but they are often very convenient

Object-Oriented
Programming

 5 - 20

DESTRUCTOR
S3 Destructor functions are used to ensure proper

cleanup when a variable is destroyed
3 A destructor function is a member function with the

same name as the class preceded by a tilde
3 Calls to destructor functions are automatic,

occurring when a variable goes out of scope
3 Destructor functions may not have any arguments
3 Destructor functions are optional, like constructor

functions
3 Unlike constructor functions, only one destructor

function may be declared

Object-Oriented
Programming

 5 - 21

const
AVOIDING THE

PREPROCESSOR3 const replaces part of the function of the #define
preprocessor directive

3 const performs value substitution, adding type
checking and normal expression evaluation

3 const is placed in front of any variable definition,
indicating that --

1. the value cannot be changed
2. the compiler should try not to allocate

storage, keeping the information in the symbol table
instead

const float pi = 3.14159;

Object-Oriented
Programming

 5 - 22

const IN ANSI C AND
C++3 const behaves differently in ANSI C and C++

3 Linkage --
u In C, const defaults to external linkage (global)
u In C++, const defaults to internal linkage (local)

3 Memory allocation --
u In C, const always allocates storage for the value
u In C++, const tries to store values in the symbol

table
3 Constant expressions (like array definitions) --

u In C, const variables cannot be used in constant
expressions (e.g., cannot be used in header files)

u In C++, const variables can be used in constant
expressions if symbol table storage is possible (i.e.,
elaborate structures are not involved)

Object-Oriented
Programming

 5 - 23

inline
FUNCTIONS3 In C++, the user can create inline functions, where,

when they are called, their code itself is placed at the point
of the call rather than a subroutine call instruction

3 inline functions were created to replace the macro
functions required in C to perform such code optimization

3 Functions defined within a class declaration are
automatically inline

3 Global functions must use the inline keyword to
become inline

3 Full C++ type checking is performed on inline
functions, like any other functions

3 The prototype and function body of an inline
function are stored in the symbol table

Object-Oriented
Programming

 5 - 24

DEFINING
OBJECTS3 In C++, objects (variables) may be defined

anywhere
Some variables cannot be initialized until

code has been executed, so C++ allows a variable
to be defined at any point in a scope; the life of
such a variable extends from that point to the
end of the scope

3 In C++, aggregate initialization is supported
extensively

3 Storage is reserved at the beginning of a scope
Local storage usually comes off the stack, so

C++ scans forward when a scope is entered
3 Initialization of an object takes place at the point

of definition, even though the space has already been
allocated

3 An object is not available until the point of
definition

If the scope is left before the constructor is
called, the destructor is not called

Goto's which skip variable initialization are
not allowed

Object-Oriented
Programming

 5 - 25

REFERENCE
S3 As we have already seen, C++ supports pointers like

C
3 C++ also supports the reference (or reference

type), which is like a pointer except that the compiler
automatically takes the address and dereferences it for you
(allowing dot notation instead of arrow notation)

int& fct(float&);
...
int *ip;
float *fp;
ip = fct(*fp);

Object-Oriented
Programming

 5 - 26

REFERENCES,
Continued3 References are almost exclusively used as

function arguments and return values
3 Inside a member function, the address of the

current object is accessed with the keyword

this
3 Example of this :

class xint {
 int a, b;
 void init();
public:
 xint() { this->init(); }
};

Object-Oriented
Programming

 5 - 27

REFERENCES,
Continued3 References can be independent, acting like a

normal variable except that they modify storage used by
other variables

int i = 100;
int &ip = i;
ip++; 9/29/22 changes the value of i to 101

Object-Oriented
Programming

 5 - 28

STATIC CLASS MEMBERS IN
C++3 Class members (data or functions) that work with the class

as a whole rather than individual objects are declared with the
keyword static

3 Static members may be accessed by all members of a class,
but the name of the static member is hidden within the scope of
the class, so nothing outside the class may access it

3 Static data members only have one instance for all objects
of a class

3 Defining and initializing static data is performed by a global
definition that reserves storage and initializes the data

3 Static member functions also work with the entire class
3 The address of an object, referred to with the keyword this,

is not passed into a static member function, so static member
functions can only access static data members or call other static
member functions

3 Static member functions may only be called with an object
or by specifying the class and the scope resolution operator

Object-Oriented
Programming

 5 - 29

DYNAMIC OBJECT
CREATION

3 Dynamic object creation is built into the C++
language, through the keywords new and delete rather
than being implemented only in library function calls
such as malloc() and free()

3 Dynamic object creation lets the type and lifetime
of an object be chosen at run time

Object-Oriented
Programming

 5 - 30

malloc() AND
new

3 malloc() allocates space for an object given
its size

3 new allocates space for an object given its
type

3 malloc() does not initialize the space
3 new calls the associated constructor function

to initialize the object

int *ip;
ip = (int

*)malloc(sizeof(int));
 /* done in C */
ip = new int;
 9/29/22 done in C++

Object-Oriented
Programming

 5 - 31

free() AND
delete3 free() deallocates space provided by malloc()

3 delete deallocates space provided by new
3 free() does no cleanup other than freeing the

space
3 delete calls a destructor for the object

With the advent of new
and delete in C++, there
is no reasonable need for
malloc() and free()
except for compatibility
with C

Object-Oriented
Programming

 5 - 32

CONTAINER
CLASSES3 Container classes, also called collections, are

classes which hold objects created at run time
3 Container classes often hold groups of objects

from other classess, making them a form of composite
class

Object-Oriented
Programming

 5 - 33

HEADER
FILES3 In C++, a header file contains declarations only, not

definitions
3 A header file includes:

u class declarations
u function declarations
u const values
u anything else that is a part of the public

interface to a class or library
3 A header file must be insulated so the compiler sees

its contents only once when compiling a file; preprocessor
statements, like those used before for STORABLE.H, should
be used to perform this insulation

3 In essence, these preprocessor statements direct the
header file to be skipped if it has already been included

Object-Oriented
Programming

 5 - 34

INHERITANC
E3 Inheritance:

u allows new classes to be built from existing
classes

u supports code reuse without the need to
rewrite

u does not entail modification to the code on
which the new classes are based

u requires access to only the header files of
the classes on which the new classes are based

3 When a new class inherits from a base class:
u all of the public members of the base class

can be public in the new class
u none of the public members of the base

class can be public in the new class
u any combination of the above
u members of the same name as in the base

may now have different meanings

Object-Oriented
Programming

 5 - 35

INHERITANCE
SYNTAX

class derived : [public] base { /* details
*/ };

name of base
class

if public, public
members in
base class are
automatically
public members in the
derived class

name of new, derived
class

single
colon

Object-Oriented
Programming

 5 - 36

INHERITANC
E

3 Inheritance requires a lot of design-oriented
thought in order to be applied correctly

3 Use inheritance only when it makes sense -- is the
derived class really an offspring of the base class, and
does it make sense that the derived class should inherit
capabilities from the base class?

3 Breaking a problem into classes has the effect of
partitioning the problem

Object-Oriented
Programming

 5 - 37

BASE CLASS
CONSTRUCTORS

AND DESTRUCTORS3 Base class constructors are called in the
constructor initializer list, which was shown in
MULTINH.CPP:
derived07:21:41 PMderived() : base1(),
base2() { }

base class
constructors

derived class
constructor

Object-Oriented
Programming

 5 - 38

DERIVED
CLASSES

3 The way C++ calls base class constructors
ensures that all derived class constructors can depend
on the base class being properly initialized

3 Up to one destructor may be defined for each
class

3 Destructors are called automatically, and all
destructors are called for an object, which includes the
destructors for its base classes, their base classes, and
so on

3 There is no destructor equivalent for the
constructor initializer list

3 Destructors are called from the top down (the
opposite to the order of constructor calls)

Object-Oriented
Programming

 5 - 39

CREATING
CLASSES

WITH
COMPOSITION3 Inheritance is not

the only way to create new classes from existing classes in
C++; inheritance is sometimes said to represent an is-a
relationship

3 Composition is a
method of building classes that contain objects of other
classes; composition is sometimes said to represent a has-a
relationship

A car is a type of vehicle inheritance
A car has an engine and four wheels

composition

Object-Oriented
Programming

 5 - 40

CREATING
CLASSES

WITH
COMPOSITION3 Composition involves creating instances of a class

inside another class
3 If the objects have constructors which require

arguments, those objects must be explicitly initialized in
the constructor initializer list

3 The order of calls in a constructor initializer list is
not necessarily the order in which they appear; instead, the
base class constructor is called first, and so on, and the
member object constructors are called in the order in which
the objects are declared in the class

3 The constructor initializer list only determines the
arguments given to the constructors, not the order of
constructor calls

Object-Oriented
Programming

 5 - 41

const AND enum INSIDE
CLASSES

3 A const inside a class behaves differently from a const
outside a class

3 A const in C++ must always be initialized when it is
created

3 A C++ class declaration is not a definition (it does not
reserve storage), so a const in a class must be given an initial
value when the constructor is called

class X {
 const i; 9/29/22 const i = 1; not

allowed
public:
 X (int I) : i(I) {}
};

i is initialized
to I

Object-Oriented
Programming

 5 - 42

const AND enum,
Continued3 Because const allocates storage, it can not be used

in a constant expression, so the following is invalid:
class int_array {
 const sz;
 int array[sz]; 9/29/22 not a constant

expression
 9/29/22 ...
};

3 A solution to this problem is to employ an
untagged enumeration value as a const:

class int_array {
 enum { sz = 100 };
 int array[sz];
 9/29/22 ...
};

Object-Oriented
Programming

 5 - 43

EARLY AND LATE
BINDING3 Binding -- a linkage between a function call and a

function definition
3 Compile-time, static, or early, binding -- those

linkages resolved during the run of the compiler and
linker

3 Run-time, dynamic, or late, binding -- linkages are
resolved through a table of addresses of possible
routines to call; this table is provided, and a particular
table entry is selected during execution of the code

3 The virtual function is the particular C++ feature
which supports late binding

Object-Oriented
Programming

 5 - 44

VIRTUAL
FUNCTIONSvirtual return_type function_name(type

arg);

3 The virtual keyword in C++ implements late
binding

3 The virtual keyword causes a hidden pointer,
called VPTR, to be created

3 The VPTR is assigned by the constructor to the
address of the VTABLE, which in turn contains the
addresses of all virtual functions

3 A virtual function call consists of code that
indexes into the VTABLE through the VPTR

Object-Oriented
Programming

 5 - 45

CREATING EXTENSIBLE
PROGRAMS

3 The goal of object-oriented design is to identify the
essential concepts and activities performed by the system
(or program) and to translate them into types

u Humans organize the world as types
u C++ allows a programmer to organize a

program as types
u Types in C++ provide models for the real-

world types
u The program becomes an image, or model, of

the problem being solved
3 A program has a single essential purpose or job it is

trying to do

Object-Oriented
Programming

 5 - 46

EXTENDING AN
OBJECT-ORIENTED

DESIGN3 Base classes generally represent the primary
concepts of an object-oriented program

3 Most base classes are abstract, representing
concepts rather than specific things, so it does not make
sense to create objects of an abstract base class

3 C++ allows an abstract base class to contain pure
virtual functions by assigning the function body to zero:

virtual void f() = 0;
3 No objects can be created of such a class; objects

may be created only from classes derived from this abstract
base class

3 These derived classes contain definitions for the pure
virtual functions in the base class

Object-Oriented
Programming

 5 - 47

EXTENDING A
PROGRAM

1. Derive a new class from the abstract base class
The desired extensions are embodied by

redefining the virtual functions in the abstract
base class

2. Add new data structures and functions as
necessary, including new constructor functions which
invoke the base constructors as needed in the constructor
definition list

The derived class is now taking on attributes
and behaviors which distinguish it from the
abstract base class

3. Add code at the point where new objects are
created so the constructor for the new derived class is
called

The new objects are created and properly
initialized

Object-Oriented
Programming

 5 - 48

OPERATOR
OVERLOADING3 In C++, the meaning of almost any operator may

be changed when that operator is used with variables of
particular types

3 The meaning of an operator changes only when
an operator is used with the indicated types

3 This permits the operators to be used as infix
functions:

a + b;
3 In the above example, the function "+" is applied

to the target object "a" with the argument "b", just like
set() below is applied to the target object "A" with the
argument "B":

A.set(B);
3 The syntax used for declaring the operator

function for the "+" operator is:
return_type operator+ (type

arg);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

